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ABSTRACT
Deep learning (DL) techniques are proven effective in many chal-
lenging tasks, and become widely-adopted in practice. However,
previous work has shown that DL libraries, the basis of building
and executing DL models, contain bugs and can cause severe con-
sequences. Unfortunately, existing testing approaches still cannot
comprehensively exercise DL libraries. They utilize existing trained
models and only detect bugs in model inference phase. In this work
we propose Muffin to address these issues. To this end, Muffin
applies a specifically-designed model fuzzing approach, which al-
lows it to generate diverse DL models to explore the target library,
instead of relying only on existing trained models.Muffin makes
differential testing feasible in the model training phase by tailoring
a set of metrics to measure the inconsistencies between different
DL libraries. In this way, Muffin can best exercise the library code
to detect more bugs. To evaluate the effectiveness of Muffin, we
conduct experiments on three widely-used DL libraries. The results
demonstrate thatMuffin can detect 39 new bugs in the latest release
versions of popular DL libraries, including Tensorflow, CNTK, and
Theano.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software libraries and repositories.
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1 INTRODUCTION
Deep learning (DL) techniques have been proven effective in many
specific tasks, such as image recognition [29], video understand-
ing [53] andmachine translation [49]. As a result, it becomes a trend
to include DL-based functionality into traditional software design.
DL systems (i.e., software systems based on DL techniques) have
beenwidely adopted in various domains in practice, e.g., self-driving
cars [28], virtual assistants [34], and software operations [11, 12, 25].
However, DL systems are shown to be lack of robustness, and thus
cause real-world accidents. For instance, a Tesla driver was killed
in self-driving mode that failed to brake the car in 2016 [6], and
an Uber autonomous driving car killed a pedestrian in 2018 [7].
Errors/defects in DL systems can cause severe consequences, and
even jeopardize human lives. Therefore, it is a critical task to test
DL systems before deploying them in real production scenarios.

Unfortunately, how to test a DL system still remains an open
challenge to the software engineering community. Many recent
approaches focus on testing its core component, the DL model, i.e.,
a deep neural network trained with a set of training data. Extensive
work aims at improving the robustness of DL models via generating
adequate test cases, e.g., adversarial inputs or corner cases [48, 60].
Many studies also focus on designing criteria to measure the test
adequacy [35, 43].

However, the execution of DL models relies on their back-end
libraries (i.e., DL libraries). Even with a correct model design, the
outputs can be wrong if the underlying library contains bugs. Specif-
ically, DL libraries provide high-level interfaces of the underlying
various computation implementations (e.g., matrix transformation,
gradient calculation and weight update) over hardware infrastruc-
ture (e.g., CPU and GPU). Bugs in DL libraries can inevitably cause
unexpected outputs, or even fatal failure of DL systems [33]. But
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one may tend to blame the DL model design, instead of its underly-
ing library, when debugging [44], incurring more difficulty to the
process. Hence, it is critical to investigate how to test DL libraries.

Recent efforts (i.e., CRADLE [44] and LEMON [50]) on DL library
testing focus on the inference phase of DL models. They adopt
differential testing [26] to detect bugs, by comparing the inference
results of existing, already-trained DL models with different DL
libraries. Specifically, CRADLE directly use such models as test
inputs, while LEMON further mutates such models as test inputs.
However, even with these approaches, bugs still exist in DL libraries,
as we have found in this work. The key reason is that they rely
on the inference phase of already-trained models, which cannot
exercise the library codes comprehensively. Such already-trained
models typically involve only a small set of DL library functions.
Moreover, DL libraries also play an important role in the model
training phase, e.g., the library codes for back propagation [30].
These library codes also cannot be exercised as well. But bugs in
these codes can cause incorrect training results, i.e., wrong resulting
models.

Unfortunately, solving these concerns is a challenging task. First,
it is hard, if not infeasible, to obtain tremendous, diverse already-
trained models to comprehensively exercise library codes. Muta-
tions based on such existing models also cannot solve this problem
as they inherit the model structures, limiting the exploration of
library functions. Moreover, as test oracles are not available gener-
ally, existing approaches [44, 50] resort to differential testing, based
on comparing the model outputs with different DL libraries. How-
ever, such outputs are not existing in the training phase, incurring
a huge challenge to applying differential testing.

In this work, we propose Muffin, a fuzzing-based approach to
test DL libraries with high functionality coverage. Instead of relying
on already-trained models,Muffin obtains diverse test inputs (i.e.,
models) with an automatic model generation algorithm. It formu-
lates model structure as a Directed Acyclic Graph (DAG), based
on which it builds a model layer by layer with an aim to achieve
high functionality coverage of DL libraries. To perform differential
testing,Muffin relies on data trace analysis in the training phase.
In particular, we divide the model training phase into three differ-
ent stages (i.e., forward calculation, loss calculation and gradient
calculation), and accordingly design a set of metrics on the data
traces to measure the consistency of results by different DL libraries.
Inconsistencies can thus indicate potential bugs.

We apply Muffin to test 15 release versions of three widely-
used DL libraries, i.e., TensorFlow [5], CNTK [2], and Theano [47].
Muffin detects 39 new bugs (including 21 crash bugs) in the latest
release versions of these libraries. Extensive experiments based on
6 popular datasets show that compared with existing approaches,
Muffin is capable of detecting more inconsistencies within a com-
parable testing time. Furthermore, we investigate the benefit of
our model generation method through comparing Muffin with
layer-by-layer testing. The results show thatMuffin is capable of
detecting more inconsistencies and crashes. Our experiments prove
the effectiveness of Muffin.

Muffin contributes to the software testing art in the following
three aspects:

Figure 1: The training phase of a DL model

• We propose Muffin, a DL library testing approach based on
a novel DL model fuzzing method, which can exercise DL
library functionalities more comprehensively.
• We make differential testing feasible in testing the model
training phase, by proposing a data trace analysis method to
detect inconsistencies between different test targets.
• We implement our ideas as an open-source available software
toolMuffin, which can facilitate real-world DL library testing
tasks, as well as further follow-up research.
• We conduct an extensive study on 15 versions of threewidely-
used DL libraries. The results show thatMuffin can detect 39
new bugs, which cannot be detected by previous methods.

The rest of paper is organized as follows. Section 2 introduces
background knowledge about DL model and DL library. Section 3
elaborates the design and implementation details of Muffin. We
demonstrate the experimental setup in Section 4, and analyze the
results in Section 5. Further discussion is provided in Section 6.
We introduce related work in Section 7 and conclude the paper in
Section 8.

2 BACKGROUND
2.1 Deep Learning Model
DL models are designed to automatically draw statistical rules from
training data [23]. A DL model typically consists of a number of
neurons with a layered, connected structure. The neurons between
layers are connected with links. Different links are associated with
different weights, which are obtained through training with input
data. Each layer conducts a specific kind of transformation (e.g.,
convolution and pooling) for the input data with specific weights.
In particular, the same layer can be adopted multiple times in a
DL model, which has different weight values on the links and thus
produces diverse results.

Essentially, a developer would design the architecture of a DL
model such as the types of layers, how layers are connected and
the loss function. Then the training process of a DL model is to find
the appropriate weight values, so that the outputs can best produce
expected results. The training phase typically consists of a huge
amount of repeated training steps. Figure 1 outlines the process of
a single training step, which can be divided into three stages:

• Forward Calculation (FC): Given a batch of training cases,
the model conducts specific calculations according to the
layer types and get the corresponding outputs.
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Figure 2: The structure of DL libraries

• Loss Calculation (LC): The model calculates the value of the
predefined loss function, which measures the differences
between the model outputs and the ground-truth labels.
• Backward Calculation (BC): According to the value of the
loss function, the model calculates the gradients of each
neuron and updates the corresponding weight values from
the output layer to the input layer.

Such training steps continue until the weights converge, i.e., the
performance of the model cannot be further improved.

The weight values determine how the DL model processes the
input to generate output. Thus, the performance of a DL model, i.e.,
whether it can produce correct results, is largely determined by the
weights. Since the weight values are obtained through the training
process, it is critical to detect bugs in model training phase. How-
ever, existing work only focuses on detecting bugs in the inference
phase [44, 50].

2.2 Deep Learning Library
Figure 2 shows the structure of DL libraries. There are two tiers
of libraries (i.e., high-level and low-level). In general, developers
implement the source programs with high-level library APIs, which
invoke the algorithms implemented in low-level libraries. Different
low-level libraries are based on different infrastructures, e.g., CPU,
GPU and Tensor Processing Unit (TPU) [1], thus may have different
implementations for the same algorithm specification. On the other
hand, high-level DL libraries can hide the differences between low-
level libraries and provide a consistent abstraction to facilitate DL
model development.

Keras [4] is one of the most popular high-level DL libraries
that has been widely used in various domains [15, 32, 40]. Keras
generally runs on top of three low-level libraries, i.e., TensorFlow,
CNTK, and Theano, which cover most of the widely-used libraries.
Developers implement source programs by calling APIs provided
by Keras, which invoke the assigned backend low-level library to
execute the computation.

Specifically, implementing a DL model using Keras mainly con-
tains three parts: loading the data, defining the model architecture,
and training the model with the data. It is worth noting that while
the training process includes complicated calculations (i.e., FC, LC
and BC), it can be simply implemented via calling the “model.fit()”
function provided by Keras.

A high-level library is relatively simple, which glues the func-
tions in a low-level library that provide concrete, complicated com-
putation. Low-level libraries are not bug free and they are also

not easy to be tested, due to their complication. Similar to existing
work [44, 50], we focus on testing low-level libraries, e.g., Tensor-
Flow, CNTK, and Theano. We adopt Keras as the high-level library.
Our target is to test the DL library codes involved in the model
training phase with high functionality coverage. Specifically, DL
libraries contain many auxiliary codes for various tasks such as pro-
filing and hardware adaptation, rather than learning-related ones.
Like existing tools to test DL libraries, we focus only on learning-
related APIs. In this paper, we use functionality coverage as the
coverage metric, which refers to the percentage of the invoked APIs
in all the pre-defined, learning-related APIs we considered.

2.3 Challenges
In order to perform comprehensive DL library testing (e.g., test
the library codes involved in model training), there are two main
challenges. First, it is difficult to obtain a set of DL models as testing
inputs that cover most library APIs. A DL model has a layered,
connected structure, which hinders the adoption of traditional test
input generation approaches. Furthermore, many APIs in DL li-
braries have specific usage scenarios, e.g.,Convolution Layer for
image processing tasks, Recurrent Layers for text processing and
various activation functions (e.g., ReLU [41] and leaky-ReLU [57]).
Due to such complication, it is non-trivial to obtain a set of well-
trained models to achieve high functionality coverage.

The second challenge is the test oracle in model training phase.
Existing approaches [44, 50] utilize differential testing based on
the model outputs with different DL libraries. Unfortunately, as
we have discussed, DL models learn the weight values through
training. Therefore, the model outputs not exist in the training
phase, causing existing differential testing methods infeasible.

Next, we introduce our approach,Muffin, which is designed to
address the above two challenges.

3 APPROACH
3.1 Overview
In this work, we proposeMuffin, a novel approach to perform com-
prehensive DL library testing, i.e., test the library codes related to
model training with high functionality coverage. Figure 3 presents
the overview of Muffin, which is specifically tailored to solve the
two design challenges.

To obtain diverse DL models, we propose a fuzzing-based model
generation method. In contrast to existing methods that adopt
manually-designed models, the proposed model generation ap-
proach allowsMuffin to exercise the target library with tremendous,
diverse models. Specifically, we divide the model architecture into
two parts: structure information (i.e., how layers are connected)
and layer information (i.e., what layer types are used). Through
formulating the structure information of a DL model as a DAG,
Muffin first generates DAGs as the structure information, and then
utilizes a greedy layer selection algorithm to generate the layer
information. In this way,Muffin can generate diverse DL models
(Section 3.2).

To conduct differential testing, Muffin performs data trace anal-
ysis in the model training phase. In particular,Muffin profiles the
data traces from different training stages (i.e., FC, LC and BC). It
then detects the inconsistencies of different libraries based on a
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Figure 3: Overview of Muffin

set of proposed metrics, which measures the output variance of
consecutive layers. (Section 3.3).

3.2 Model Generation
As discussed in Section 2.1, a DL model has a layered structure with
connections between layers. In order to generate a set of diverse DL
models to explore library codes, we need to decide what types of
layers are used in a model, as well as how these layers are connected.
Unfortunately, simply selecting a series of layers and stacking them
together can easily cause model failure. For example, the “Add”
layer is used to add a list of inputs. If only one input is fed to this
layer, the model generation would fail. Besides, the inputs of “Add”
layer should also have the same shape to avoid failure generation.
Therefore, we design a top-down generation algorithm, which first
generates the structure information (i.e., the topology of how layers
are connected in the model), followed by the generating of the layer
information (i.e., specific layer types adopted in the model).

3.2.1 Structure Information Generation. Given a set of inputs, a DL
model performs specific computation layer by layer, so as to yield
the outputs. Therefore, the computation flow of a DL model can be
abstracted as a DAG. Specifically, every vertex in the DAG repre-
sents a layer, and every edge between two vertices represents a link
between the corresponding layers in the original model. Such an
abstraction method is also applied in current model representation.
For example, TensorFlow uses a DAG to represent the computa-
tional graph of a DL model [8]. Therefore, we utilize a DAG to
represent the structure information of a DL model.

Although it is not difficult to generate a DAG, the corresponding
model structure may be too simple or too complicated, which is
rarely used in practice. Inspired by recent studies in Neural Archi-
tecture Search (NAS) [20], that targets on automating the design
of model architectures, we summarize two model structure tem-
plates, as shown in Figure 4. Specifically, Figure 4(a) shows the
chain structure with skips. Chain-structured architecture is the sim-
plest example of the model structure topology. Through permitting
arbitrary skip connections between nodes, this template can cover
many commonly-used DL models (e.g., fully-connected networks,
VGG [45] and DenseNet [31]). On the other hand, the cell-based

(a) Chain structure with skips (b) Cell-based structure

Figure 4: Examples of DL model structure templates

structure in Figure 4(b) builds upon the observation that many
specifically-designed model architectures consist of repetitions of
fixed structures [52], e.g., ResNet [29]. Each cell in the structure
is a small DAG that conducts a specific transformation, e.g., the
computation cell in Figure 4(b) contains computation layers, while
the reduction cell is used for downsampling. It is worth noting
that originally the same cells (e.g., computation cells) should have
the same DAG. Since our target is generating diverse structures
instead of finding the architecture with the best performance, we
remove this restriction in the proposed template (i.e., same cells
may have different DAGs). In addition, we also guarantee that the
generated DAG has only one vertex whose in-degree is 0 as the
input layer, one vertex whose out-degree is 0 as the output layer.
There is also no isolated vertex in the generated DAG. In this way,
Muffin generates a DAG as the model structure information.

3.2.2 Layer Information Generation. Given the generated structure
information, we need to refine the layer information, i.e., determine
the specific layer type for each vertex in the DAG. As discussed
before, stacking layers without guidance can easily cause model
failure. Specifically, there are two types of restrictions when select-
ing layers. The first restriction is the input number restriction. In
particular, most layers (e.g., “Convolution”) are SI (Single-Input)
layers, while some layers (e.g., “Concatenation”) are MI (Multiple-
Input) ones. If more than one input is fed to an SI layer, this layer
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can only process one of the inputs, leading to the existence of in-
valid connections between layers. The corresponding DAG thus
is equivalent to the DAG without the invalid connections, which
lowers the DAG diversity. Therefore, we have to choose the proper
layer according to the number of inputs. Considering that an edge
in a DAG represents the data flow direction, we can determine the
number of inputs that the corresponding layer takes based on the
in-degree of the vertex.

The second restriction is the input/output shape restriction. Specif-
ically, MI layers require the inputs to have the same shape in specific
axis(es) so as to conduct the transformation properly, e.g., the inputs
of “Concatenation” layer should have the same shape except for the
concatenation axis. Therefore, before feeding the inputs to an MI
layer, we adopt additional “Reshaping” layers to reshape the inputs
into the same shape. In addition, the input shape of the input layer
(i.e., the vertex with 0 in-degree), and the output shape of the output
layer (i.e., the vertex with 0 out-degree) need to be properly set
according to the training data and the task type (e.g., classification,
regression). We still resort to the “Reshaping” layer to reshape the
output size, while the input shape is directly set based on the shape
of input data.

Furthermore, in order to increase the diversity of the generated
models, intuitively, we should give a larger chance to the layer that
is rarely used before. Based on this intuition, we design a layer
selection procedure based on Fitness Proportionate Selection [21].
Specifically, for a specific layer 𝑙 , Muffin records the number of
times that 𝑙 has been selected to construct a model, denoted as 𝑐 .
Then Muffin calculates 𝑠 = 1

𝑐+1 as the score for 𝑙 . Based on 𝑠 , the
probability that 𝑙 is selected among all layer types can be calculated
as follows:

𝑝 =
𝑠∑𝑟

𝑘=1 𝑠𝑘
(1)

where 𝑟 is the total number of possible layers. Since we divide
layer types into two categories (i.e., SI and MI), score 𝑠 and proba-
bility 𝑝 are calculated based on the layers belonging to the same
category. In this way,Muffin generates the layer information via
selecting a specific layer for each vertex in the DAG. A DL model
can thus be constructed according to the generated structure infor-
mation and layer information.

3.2.3 Entire Algorithm. We formally describe our fuzzing-based
model generation method in Algorithm 1. This algorithm takes 5
parameters, where 𝑁𝑚 is the total number of models to generate,
serving as the terminating condition;𝑀𝐴𝑋𝑐 and𝑀𝐴𝑋𝑣 are param-
eters to control the size of DAG; 𝐿𝑖 and 𝐿𝑜 should be manually
set according to the input data and target task. Lines 2-33 itera-
tively generate a set of DL models. Specifically, lines 3-13 randomly
choose a template and generate a DAG as the structure information.
Lines 17-18 set the input layer. Lines 22-24 select SI layers for the
1 in-degree vertices, and Lines 26-29 select MI layers for the ver-
tices with more than 1 in-degree. Lines 30-31 set the output layer.
Finally, lines 32-33 construct a DL model𝑚 based on the generated
structure information and layer information, then adding𝑚 to the
result set𝑀 .

Algorithm 1:Model Architecture Generation
Input: 𝑁𝑚 : Number of generated models

𝑀𝐴𝑋𝑐 : Maximum number of cells in a model
𝑀𝐴𝑋𝑣 : Maximum number of vertices in a DAG
𝐿𝑖 : Input shape
𝐿𝑜 : Output shape

Output:𝑀 : A set of generated models
1 𝑀 ← ∅;
2 while 𝑆𝑖𝑧𝑒 (𝑀) < 𝑁𝑚 do

/* select a template and generate Structure

Information 𝑆𝐼 */

3 𝑝 ← 𝑅𝑎𝑛𝑑𝑜𝑚(0, 1);
4 if 𝑝 < 0.5 then
5 𝑁𝑣 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 (1, 𝑀𝐴𝑋𝑣);
6 𝑆𝐼 = 𝐶𝑟𝑒𝑎𝑡𝑒𝐶ℎ𝑎𝑖𝑛𝐷𝐴𝐺 (𝑁𝑣);
7 else
8 𝑁𝑐 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 (1, 𝑀𝐴𝑋𝑐 );
9 𝐺 ← ∅;

10 for 𝑖 from 1 to 𝑁𝑐 do
11 𝐺𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐷𝐴𝐺 ();
12 𝐺 ← 𝐺 ∪ {𝐺𝑖 };
13 𝑆𝐼 = 𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑒𝑙𝑙𝐷𝐴𝐺 (𝑁𝑐 ,𝐺);
14 𝐿𝐼 ← ∅; /* Layer Information */

15 /* generate model according to DAG */

16 foreach node 𝑗 in 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑆𝐼 ) do
17 if the in-degree of node 𝑗 is 0 then
18 𝐿𝐼 ← 𝐿𝐼 ∪ {𝑆𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟 (𝐿𝑖 , 𝑗)};
19 else
20 𝑃 𝑗 ← 𝐺𝑒𝑡𝐴𝑙𝑙𝐷𝑖𝑟𝑒𝑐𝑡𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ( 𝑗);
21 if 𝑆𝑖𝑧𝑒 (𝑃 𝑗 ) == 1 then /* SI layer */
22 𝑠ℎ𝑎𝑝𝑒 ← 𝐺𝑒𝑡𝑆ℎ𝑎𝑝𝑒 (𝑃 𝑗 [0]);
23 𝐿𝐼 ← 𝐿𝐼 ∪ {𝑆𝑒𝑡𝑆𝐼𝐿𝑎𝑦𝑒𝑟 (𝑠ℎ𝑎𝑝𝑒, 𝑗)};
24 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝐼𝑆𝑐𝑜𝑟𝑒 ()
25 else /* MI layer */
26 𝑠ℎ𝑎𝑝𝑒 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆ℎ𝑎𝑝𝑒 ();
27 𝐿𝐼 ← 𝐿𝐼 ∪ 𝑅𝑒𝑠ℎ𝑎𝑝𝑖𝑛𝑔𝐿𝑎𝑦𝑒𝑟𝑠 (𝑃 𝑗 , 𝑠ℎ𝑎𝑝𝑒);
28 𝐿𝐼 ← 𝐿𝐼 ∪ {𝑆𝑒𝑡𝑀𝐼𝐿𝑎𝑦𝑒𝑟 (𝑠ℎ𝑎𝑝𝑒, 𝑗)};
29 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝐼𝑆𝑐𝑜𝑟𝑒 ()
30 if the out-degree of node 𝑗 is 0 then
31 𝐿𝐼 ← 𝐿𝐼 ∪ 𝑆𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟 ( 𝑗, 𝐿𝑜 );
32 𝑚 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑀𝑜𝑑𝑒𝑙 (𝑆𝐼, 𝐿𝐼 );
33 𝑀 ← 𝑀 ∪ {𝑚};
34 return𝑀 ;

3.3 Inconsistency Detection
In order to detect inconsistencies and perform differential testing
accordingly,Muffin requires proper metrics to measure the differ-
ences between the execution results of different libraries. However,
the metrics proposed by the existing work are designed only for
already-trained models, which calculate the inconsistency between
the ground-truth label and model outputs. Since our target is to
test DL library in the training phase (i.e., without a trained model),
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such metrics cannot be directly applied. Instead, we propose a new
metric based on the variance of outputs in consecutive layers.

As demonstrated in Section 2.1, themodel training phase includes
repeated training steps, and each training step can be divided into
three stages: FC, LC and BC. Specifically, in FC stage, the model
performs calculation from input layer to output layer. In LC stage,
the model calculates the value of loss function. In BC stage, the
model calculates gradients from the output layer to the input layer.
Resorting to dynamic analysis, we can collect the data traces of
different libraries and compare the differences.

In particular, we utilize the Functional API mechanism provided
by Keras to collect dynamic traces. More specifically, we profile
the results produced by every layer in FC stage, the loss value in
LC stage, and the gradient value of each layer in BC stage. Based
on the dynamic trace, Muffin gradually compares the values of
layer outputs, the loss, and the gradients, so as to detect the suspect
behavior of specific layers.

However, due to normal uncertain factors such as floating-point
deviation [22], we cannot determine whether a value difference is
caused by potential bugs or normal factors. Specifically, there are
many small deviations (less than 10−6) in layer outputs, which may
be gradually amplified or reduced, e.g., by pooling or activation
functions. We consider that normal factors would only lead to slight
layer output difference, i.e., if the differences of layer outputs change
dramatically, it indicates a suspicious behavior. Therefore, instead
of comparing the outputs from one single layer, we consider the
difference-changes between two consecutive layers. Only when the
deviation is amplified wouldMuffin consider inconsistency. Since
outputs from different layers may have different shapes, we first use
the following Chebyshev distance (i.e., 𝐿∞ distance) [9] to measure
the difference of the outputs from the same layer.

𝐷 (𝑋,𝑌 ) = max
𝑚
( |𝑥𝑚 − 𝑦𝑚 |) (2)

In the above equation, 𝑋 and 𝑌 are two tensors (i.e., output of a
layer is typically a high-dimensional tensor), while 𝑥𝑝 and 𝑦𝑝 are
elements in 𝑋 and 𝑌 , respectively. Chebyshev distance defines that
the distance between two tensors is the greatest of their differences
along any coordinate dimension. In this way, we can avoid the
influence of different tensor shapes from different layers when
measuring the differences.

We now describe the inconsistency detection procedure of Muf-
fin. For brevity, we denote 𝑛 as the total number of layers, 𝑙𝑖 , 𝑖 ∈
[1, 𝑛] as the 𝑖𝑡ℎ layer, 𝑂𝑖

𝑗
and 𝑂𝑖

𝑘
as the outputs of 𝑙𝑖 using library

𝑗 and 𝑘 , respectively. 𝑃 (𝑖) denotes the set of layers that are direct
predecessors of 𝑙𝑖 in the DAG, i.e., each layer in 𝑃 (𝑖) is 𝑙𝑖 ’s previous
layer.

In FC stage,Muffin compares the differences of the output ten-
sors from 𝑙𝑖 and its predecessors 𝑙𝑝 . If the difference of 𝑙𝑝 is smaller
than 𝜖 , while the difference of 𝑙𝑖 is larger than a user-defined thresh-
old 𝑡 , then Muffin determine that an inconsistency is detected in
𝑙𝑖 . The inconsistency layers detected in FC stage can be formally
defined as follows:

𝐼𝑛𝑐_𝐹𝐶 = {𝑙𝑖 , 𝑖 ∈ [1, 𝑛] | (𝐷 (𝑂𝑖
𝑗 ,𝑂

𝑖
𝑘
) > 𝑡)∧

(𝐷 (𝑂𝑝

𝑗
,𝑂

𝑝

𝑘
) < 𝜖, 𝑝 ∈ 𝑃 (𝑖))}

Table 1: Versions of libraries under test

ID Keras TensorFlow Theano CNTK
E1 2.3.1 2.0.0 1.0.4 2.7.0
E2 2.3.1 1.15.0 1.0.3 2.6.0
E3 2.2.4 1.12.0 1.0.2 2.5.0
E4 2.2.4 1.11.0 1.0.1 2.4.0
E5 2.2.4 1.10.0 1.0.0 2.3.0

In LC stage, the model calculates loss value based on the results
from the output layer. To avoid the transmission of errors, Muffin
only performs inconsistency detection in LC stage when the differ-
ence of model outputs is smaller than 𝜖 . It is worth noting that a
small difference in model outputs does not mean that there is no
inconsistency in middle layers. Large difference could be masked
due to the existence of downsampling layers such as pooling. Since
the result of a loss function is a number, we directly compare the
absolute difference as follows:

𝐼𝑛𝑐_𝐿𝐶 = {𝐿 | ( ( |𝐿𝑂 𝑗 − 𝐿𝑂𝑘 | > 𝑡) ∨ (|𝐿𝐺 𝑗 − 𝐿𝐺𝑘 | > 𝑡))∧
(𝐷 (𝑂𝑛

𝑗 ,𝑂
𝑛
𝑘
) < 𝜖)}

In the above equation, 𝐿 denotes the loss function, 𝐿𝑂 𝑗 and 𝐿𝑂𝑘

are the output results of 𝐿, 𝐿𝐺 𝑗 and 𝐿𝐺𝑘 are the gradient results of
𝐿, 𝑂𝑛

𝑗
and 𝑂𝑛

𝑘
are the model outputs, using library 𝑗 and 𝑘 .

In BC stage, the model calculates gradients to update weights
from the output layer to the input layer. Similarly, Muffin only
conducts inconsistency detection if the difference in loss function
is smaller than 𝜖 . We formulate the inconsistency detection in BC
stage as follows:

𝐼𝑛𝑐_𝐵𝐶 = {𝑙𝑖 , 𝑖 ∈ [1, 𝑛] | (𝐷 (𝐺𝑖
𝑗 ,𝐺

𝑖
𝑘
) > 𝑡)∧

(𝐷 (𝐺𝑠
𝑗 ,𝐺

𝑠
𝑘
) < 𝜖, 𝑠 ∈ 𝑆 (𝑖))}

where 𝑆 (𝑖) denotes the set of layers that are direct successors of
𝑙𝑖 ;𝐺𝑖

𝑗
and𝐺𝑖

𝑘
denote the gradient result of 𝑙𝑖 using different libraries.

Especially, the successor of the output layer is the loss function.

4 EVALUATION SETUP
In the evaluation, we evaluate the performance of Muffin through
answering the following research questions.
• RQ1:How doesMuffin perform in detecting bugs in DL libraries?
• RQ2: CanMuffin achieve better performance compared to other
methods?
• RQ3: How do the different parameter settings affect the perfor-
mance of Muffin?

4.1 Libraries and Datasets
4.1.1 Libraries. We use three widely-used DL libraries (i.e., Ten-
sorFlow, Theano, and CNTK) as the back-end low-level libraries as
our testing targets, and Keras as the front-end high-level library. To
sufficiently illustrate the effectiveness of Muffin, we utilize a total
of 15 release versions of the three back-end libraries, and construct
five experimental environments for differential testing, i.e., E1-E5
in Table 1. In particular, in E1, Keras 2.3.1 is the latest version that
supports multiple back-ends; Theano 1.0.4 and CNTK 2.7.0 are the
latest versions, while TensorFlow 2.0.0 is the latest version that



Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

supported by Keras. For the sake of brevity, we use TF, TH, and
CK to represent TensorFlow, Theano and CNTK in the following
figures and tables.

4.1.2 Datasets. Our approach is not sensitive to datasets, i.e., theo-
retically any data type can be used for testing. In order to facilitate
subsequent comparative experiments with existing approaches, we
selected 6 widely-used datasets in existing studies [50], i.e., MNIST,
F-MNIST, CIFAR-10, ImageNet, Sine-Wave and Stock-Price. Specifi-
cally, the first four are popular image classification datasets, while
the last two are sequence datasets. In particular, Sine-Wave is the
sine function value sequence, and Stock-Price is the Disneyland
stock price sequence from 1997 to 2016.

4.2 Competitors
In order to demonstrate the effectiveness and efficiency of Muffin,
we compareMuffinwith the state-of-the-art approach, LEMON [50].
LEMON performs DL library testing though mutating existing mod-
els to generate a huge amount of new test inputs. Following the eval-
uation setup in [50], we use 11 existingmodels (i.e., AlexNet, LeNet5,
ResNet50,MobileNetV1, InceptionV3, DenseNet121, VGG16, VGG19,
Xception, LSTM-1, LSTM-2) as the seed models for mutation. By
comparing with LEMON, we evaluate whether Muffin, based on
directed test cases (i.e., model) generation, can outperform LEMON
in exposing bugs. Since LEMON cannot perform testing in the LC
and BC stages, we only compare Muffin with LEMON through
analyzing the number of inconsistencies and bugs detected in the
FC stage. In addition, Muffin is designed to perform comprehen-
sive library testing, so we also compare the functionality coverage
achieved by Muffin and LEMON.

Besides, our DAG-based model generation is the core component
of Muffin. Thus, it is also interesting to investigate the effective-
ness of this component. To this end, we implementMuffin-UT, a
simplifiedMuffin-version method based on unit testing.Muffin-UT
differs from Muffin only in the model generation part. Specifically,
in Muffin-UT, a functional layer (e.g., Conv2D) is a to-be-tested
unit.Muffin-UT creates models with only one functional layer, and
simple reshaping layers to cope with input/output, i.e., dimension
transformation to match the input/output requirements of the to-
be-tested layer. By comparing with Muffin-UT, we show that unit
testing is still inadequate to test DL libraries.Muffin, by generating
diverse models, can expose bugs which are difficult to be detected
by traditional approaches.

4.3 Measurements
4.3.1 Number of inconsistencies. Since the proposed approach con-
ducts inconsistency detection in layer level during model training,
an inconsistency between two low-level DL libraries means that
they produce different calculation results given the same input un-
der a specific layer. In order to eliminate duplicated inconsistencies
caused by the same function, we only count the inconsistencies
produced by the same layer once. In particular, for Muffin and
Muffin-UT, we compare the number of inconsistencies detected
in different training stages, i.e., FC, LC and BC, respectively. For
LEMON, we only count the inconsistencies detected in FC stage. Al-
though different inconsistencies may be the manifests of the same
potential bug, more failure-triggering tests (i.e., the model and input

data that trigger the inconsistency) reflecting a fault in different
ways provide more information for fault localization. Therefore,
the number of detected inconsistencies can reflect the effects of
these methods to some extent.

4.3.2 Number of detected bugs. Although we count the number
of detected inconsistencies, it is more important to measure the
number of unique bugs revealed by Muffin. Based on the voting
mechanism of differential testing, we can localize the buggy layer
in the library. To avoid false positives, we further check the buggy
layer manually. Specifically, we save all intermediate layer outputs
during the testing. When an inconsistency is reported, two authors
check the corresponding source codes in different libraries and
compare the results. If their identical layer produces different results
and their implementation ideas are different, the third author will
join manual inspection so as to conclude whether the report is true
or false positive.

4.3.3 Number of NaN/Crash bugs. Besides inconsistent calculation
results, bugs in DL libraries may lead to NaN (Not a Number) and
crashes aswell [44]. GeneratingDLmodels that trigger NaN/crashes
can also provide valuable information for identifying potential
bugs. Therefore, we count the number of models with NaN or
crashes generated by three methods. In particular, we only count
the NaN/crash when at least one of the DL library can execute
properly, e.g., TensorFlow produces normal results while Theano
and CNTK produce NaN. In addition, in order to avoid duplication,
the NaN caused by the same layer, and crashes with the same error
message are only counted once.

4.4 Implementations
In the experiments, we let each method generate a total of 300 mod-
els, 50 for each dataset. For LEMON, we use its default parameters.
For Muffin, we set the maximum number of cells (i.e., 𝑀𝐴𝑋𝑐 ) to
5, and the maximum number of nodes (i.e.,𝑀𝐴𝑋𝑣 ) to 30. In terms
of inconsistency detection, we set the threshold 𝑡 to be 0.15, and
𝜖 to be 1𝑒−5. This 𝑡 value is relatively large so as to avoid many
false positives, as shown in Section 5.3. In addition,Muffin do not
consider some layers such as “Dropout” and “GaussianNoise”, so
as to avoid introducing randomness and affecting the execution
results.

All the experiments are conducted on the Intel(R) Core(TM) i7-
6700K CPU@ 4.00GHz machine with 32GB of RAM, Ubuntu 20.04.2
LTS, and one Nvidia GTX 1080 Ti GPU.

The implementation of Muffin is publicly available on GitHub 1.

5 RESULTS AND ANALYSIS
5.1 Effectiveness of Bug Detection
We first investigate the effectiveness of Muffin in terms of new
bugs detected in the latest versions of different libraries, i.e., E1 in
Table 1. After manual analysis, Muffin detects 18 bugs in the latest
version of these libraries, including 12 bugs in FC stage, 2 bugs in
LC stage, 3 bugs in BC stage and 1 NaN bugs, as shown in Table 2.
In addition,Muffin also detects 21 crash bugs, mainly from Theano
and CNTK.

1https://github.com/library-testing/Muffin
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Table 2: New bugs and crashes detected byMuffin

Library FC Bug LC Bug BC Bug NaN Crash
TensorFlow 0 2 1 0(1) 1
Theano 8 0 2 0 10
CNTK 4 0 0 1 10
Total 18(1) 21

1 "FC Bug""LC Bug""BC Bug" respectively refer to new bugs found in Forward
Calculation, Loss Calculation and Backward Calculation stages.

2 "NaN" refers to bugs related to NaN calculation.
3 The number in parentheses means the bug exists in TensorFlow2.0.0 but has
been fixed in the latest version. Other bugs are all exists in the latest version.

In particular, for the 4 bugs detected in TensorFlow 2.0.0, we
manually check whether these bugs can be reproduced in the latest
version (i.e., TensorFlow 2.6.0). The results show that among these
bugs, 1 bug has been fixed while the other 3 bugs still exist. After
reporting these bugs to the issue repository, 1 bug has been con-
firmed by developers. Among the 4 bugs detected in CNTK, 1 will
be fixed in the future version [3]. We also provide bug case analysis
according to different bug types.

FCBugs. The 12 bugs detected in FC stage involve different layer
types, including “AveragePooling2D”, “Conv1D” in Theano, and
“LSTM”, “DepthwiseConv2D”, “BatchNormalization” in CNTK. By
taking the “AveragePooling2D” bug in Theano as an example. This
bug occurs when setting the layer parameter 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 to “same“ and
𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 to the same as the shape of the input tensor. By analyzing
the results, we find that in this case, Theano would choose a wrong
pooling location, resulting in large difference (i.e., more than 13
while 𝑡 = 0.15) between the results from other libraries.

LC Bugs. By taking the “BinaryCrossentropy” bug in Tensor-
Flow as an example. When passing parameter values 𝑜𝑢𝑡𝑝𝑢𝑡=[0.,
1., 0.] and 𝑡𝑎𝑟𝑔𝑒𝑡=[0.9999999, 0.9999999, 0.0000001] to the “Bina-
ryCrossentropy” loss function, theano and CNTK return a value
[15.942385, 1.1920930e-07, 1.1920930e-07] while TensorFlow returns
[15.333239, -0., -0.], among which the difference of the first element
is not negligible. By reviewing the source code, we find that Tensor-
Flow redundantly uses an 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 parameter to clip input values,
resulting in errors. This bug has been confirmed by the developers
of TensorFlow.

BC Bugs. By taking the “ReLU” bug in Theano as an example.
When 0 exists in the input tensor of 𝑅𝑒𝐿𝑈 , theano back-propagates
a different gradients value, compared with TensorFlow and CNTK.
This bug is caused by the wrong equal sign position of Theano, i.e.,
𝑅𝑒𝐿𝑈 (𝑧) = 𝑧 | 𝑧 ≥ 0 in Theano, while 𝑅𝑒𝐿𝑈 (𝑧) = 𝑧 | 𝑧 > 0 in other
libraries. Although such implementation does not affect the results
in forward calculation, the implementation in Theano would let
the gradient propagate to previous layers in backward calculation
(which should not happen). This bug can only be detected in BC
stage, proving the effectiveness of Muffin.

NaN Bugs. By taking a TensorFlow bug as an example. Given
two 𝑁𝑎𝑁 value, the “GlobalMaxPooling” layer returns −𝐼𝑁 𝐹 , lead-
ing to the inconsistency. This bug has been fixed in the latest 2.6.0
version.

Regarding false positives, Muffin reports 19 unique inconsisten-
cies totally, where one false positive is found. The false positive
occurs in the "mean_absolute_percentage_error" loss function. This
function returns 100 ×𝑚𝑒𝑎𝑛, which amplifies the deviation and
cause the false alarm. In addition, Muffin detects 25 crash bugs

Table 3: Comparison of distinct voted layers

Method Lib FC LC BC

Muffin
TF 3 (2) 1 (1) 1 (1)
TH 15 (5) 1 (0) 1 (1)
CK 6 (2) 1 (0) 1 (1)

LEMON
TF 2 (0) - -
TH 1 (0) - -
CK 1 (0) - -

Muffin-UT
TF 4 (2) 2 (2) 2 (2)
TH 11 (1) 1 (0) 2 (2)
CK 4 (0) 1 (0) 0

1 The number in parentheses denotes the number of voted layers that ONLY de-
tected by the corresponding method.

totally. Among them four are due to unsupported models Muf-
fin generates, which can be treated as false positives. But, such
false positives have clear error messages, thus can be automatically
detected so as to avoid false alarms.

To further illustrate the effectiveness of Muffin, we count the
number of distinct voted layers detected by different approaches,
as shown in table 3. We can observe that all the 4 layers detected
by LEMON can be detected byMuffin andMuffin-UT, indicating
that Muffin and Muffin-UT can cover the exploration scope of
LEMON. On the other hand,Muffin andMuffin-UT have their own
distinct voted layers that cannot be detected by the other, proving
the effectiveness of inconsistency detection approach. These results
indicate that the natural architecture fuzzing approach adopted in
Muffin is a good supplement to unit testing.

5.2 Performance Comparison
In order to further evaluate the performance of Muffin, we compare
the number of inconsistencies, NaN, and crash detected by different
methods. We present the results under environment E1 as an exam-
ple2. Table 4 shows the inconsistencies detected by three methods
under different datasets and environments. Specifically, in the latest
library versions (i.e., E1), Muffin finds a total of 54 inconsistencies,
45 of which are found in the FC stage. In comparison, LEMON can
only find 7 inconsistencies, much less thanMuffin. Similar results
can also be observed in other environments, which prove the effec-
tiveness of Muffin in library testing. The main reason is thatMuffin
can explore more library functions through the model generation
approach, while LEMON can only mutate seed models, and thus can
hardly cover the functions not being used in seed models. Besides,
LEMON also cannot explore the library codes related to loss and
gradient calculation. As a result, LEMON only achieves 35.593%
functionality coverage (the percentage of the invoked APIs in all
the pre-defined, learning-related APIs we considered), whileMuffin
can achieve 98.305% functionality coverage. The inconsistent APIs
that cannot be identified by LEMON include “DepthwiseConv2D”,
“LocallyConnected1D”, “Conv3D” and various loss functions. It is
worth noting that although Muffin is not designed to achieve high
line coverage, we summarize and report the line coverage results:
Muffin achieves 43.22%, which is 2.07 times of that achieved by
LEMON (20.85%).

On the other hand, compared withMuffin-UT,Muffin detects
19 more inconsistencies in E1, which proves the performance of
2More experiment codes and results are available at https://github.com/library-
testing/Muffin
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Table 4: Comparison of inconsistency number

ID Method Lib Pair CIFAR-10 MNIST F-MNIST ImageNet Sine-Wave Stock-Price Total
FC LC BC FC LC BC FC LC BC FC LC BC FC LC BC FC LC BC FC LC BC

E1

Muffin
TF-TH 4 0 0 4 0 0 7 1 1 1 1 0 5 0 0 3 1 0 16 2 1
TF-CK 3 1 0 4 2 1 6 2 1 3 1 0 12 0 0 8 0 0 16 2 2
TH-CK 4 1 0 4 0 0 7 1 1 1 0 0 6 0 0 2 0 0 13 1 1

LEMON
TF-TH 1 - - 0 - - 1 - - 1 - - 0 - - 0 - - 2 - -
TF-CK 1 - - 0 - - 0 - - 1 - - 1 - - 0 - - 3 - -
TH-CK 0 - - 0 - - 1 - - 0 - - 1 - - 0 - - 2 - -

Muffin-UT
TF-TH 1 0 3 4 2 2 2 0 2 5 0 0 1 0 0 0 1 0 9 2 3
TF-CK 2 1 1 1 2 1 1 3 1 2 2 0 2 0 0 4 1 0 5 3 1
TH-CK 1 0 0 3 1 1 2 0 1 5 0 0 2 0 0 4 0 0 10 1 1

1 "FC""LC""BC" respectively represent the number of inconsistencies detected in the three stages.
2 For inconsistencies caused by the same kind of layer (or loss function), we only count once.

Table 5: Comparison of NaN/Crash number

ID Method Lib CIFAR-10 MNIST F-MNIST ImageNet Sine-Wave Stock-Price Total
NaN GC EC NaN GC EC NaN GC EC NaN GC EC NaN GC EC NaN GC EC NaN GC EC

E1

Muffin
TF 2 0 1 3 0 1 3 0 1 5 0 1 4 0 1 5 0 1 7 0 1
TH 3 0 10 2 0 10 1 0 3 2 0 3 3 0 8 3 0 4 6 0 10
CK 2 6 4 3 6 4 3 4 3 4 2 2 4 4 4 5 4 4 7 6 4

LEMON - 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0

Muffin-UT
TF 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 0 0
TH 0 0 3 0 0 3 0 0 2 0 0 2 4 0 3 0 0 3 4 0 3
CK 0 1 4 0 0 4 0 0 3 0 0 2 5 0 4 0 0 3 5 1 4

1 "NaN" represents the number of outputs with NaN. For NaN caused by the same kind of layer, we only count once.
2 "GC" and "EC" are respectively short for "Generation Crash" and "Execution Crash". The crash number have been deduplicated according to error messages.
3 LEMON does not record NaN/crash information for each backend, so we only obtain the total NaN/crash number triggered by LEMON.

Muffin. It is also worth noting that the number of inconsistencies
detected by Muffin reduces in other environments. The key reason
is that the numbers of NaN and crash triggered by Muffin increase
in old library versions, as shown in Table 5. Taking NaN and crash
into consideration, Muffin can still trigger more exceptions (i.e.,
inconsistency, NaN and crash) thanMuffin-UT. In particular, the
layer functions whereMuffin can detect exceptions whileMuffin-
UT cannot include “AveragePooling1D”, “Conv3DTranspose” and
“CategoricalCrossentropy”.

Furthermore, we also compare the execution time of the three
methods to generate 50 models and perform testing under different
datasets. The execution time of Muffin and Muffin-UT consists
of the model generation time and the three-stage inconsistency
detection time (i.e., FC, LC and BC). The execution time of LEMON
consists of model mutation time and inconsistency detection time
(only FC). The results are shown in Table 6.

In this table, we can observe that except ImageNet, the execu-
tion time of Muffin is the longest in most cases. The reason is
that Muffin conducts additional model generation (compared with
Muffin-UT), and inconsistency detection in additional two stages
(compare with LEMON). Considering that Muffin can detect much
more inconsistencies, we think such overhead (i.e., around ten min-
utes) is acceptable. These results also demonstrate that the proposed
approach (model generation and inconsistency detection) do not
bring huge overhead to Muffin.

Moreover, when performing library testing with ImageNet, the
execution time of LEMON is greatly increased. The reason is that the

Table 6: Comparison of execution time (MIN.)

Dataset Method E1 E2 E3 E4 E5

CIFAR-10
Muffin 29.20 20.67 38.75 27.38 16.75
LEMON 27.20 28.02 32.48 34.70 28.60
Muffin-UT 16.27 14.72 13.13 11.00 13.47

MNIST
Muffin 32.35 19.82 18.20 14.95 15.78
LEMON 10.58 10.28 9.88 9.67 9.28
Muffin-UT 14.87 14.88 12.40 11.02 13.20

F-MNIST
Muffin 24.78 25.00 18.23 15.92 20.38
LEMON 12.62 12.88 12.27 11.67 11.27
Muffin-UT 15.85 15.32 12.90 11.67 12.78

ImageNet
Muffin 49.04 40.72 38.12 34.50 28.22
LEMON 80.25 117.62 114.25 117.25 111.93
Muffin-UT 34.03 23.52 30.15 37.05 27.55

Sine-Wave
Muffin 25.95 24.37 18.52 15.40 17.45
LEMON 15.37 14.37 13.67 13.37 13.01
Muffin-UT 17.78 16.45 13.40 12.60 14.83

Stock-Price
Muffin 22.03 18.78 16.35 13.28 14.28
LEMON 16.58 15.50 14.35 14.37 13.82
Muffin-UT 16.07 14.22 12.45 10.85 13.25

seedmodels used by LEMON aremuchmore complicated, compared
to those under other datasets. This phenomenon reveals that the
execution time of LEMON highly depends on the complexity of seed
models. On the other hand,Muffin does not suffer from this problem.
The generated model complexity of Muffin can be controlled via
setting proper values of𝑀𝐴𝑋𝑐 and𝑀𝐴𝑋𝑣 . Under the same𝑀𝐴𝑋𝑐
and𝑀𝐴𝑋𝑣 value, the execution time of Muffin is quite stable.
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Figure 5: Performance of Muffin under different thresholds

Compared with Muffin-UT, Muffin requires additional DAG-
based model generation. In addition, the number of layers in the
model also affects the inconsistency detection time. The larger the
model, the longer the detection time. As a result, the execution time
of Muffin is slightly longer than that of Muffin-UT.

Finally, it is worth noting Muffin does not consider the final
model performance (e.g., precision and recall) in specific tasks when
generating model architectures, since it is not the objective of a
testing tool. In contrast, existing approaches (e.g., mutating exist-
ing models) typically generate limited model architectures but can
obtain high-performance models, which however, are not more
capable in detecting bugs. Instead,Muffin focuses more on model
quality in testing. Muffin can generate high-quality models. In 900
executions (3 libraries, each with 300 models), only 77 executions
(8.5%) cause four unsupported-crashes (by the same reason). More-
over, we have also shown such models are more capable in exposing
bugs, as discussed in Section 5.1.

5.3 Effect of Different Parameter Settings
Muffin introduces four parameters, i.e.,𝑀𝐴𝑋𝑐 and𝑀𝐴𝑋𝑣 to control
the size of model structure, and threshold 𝑡 and 𝜖 for inconsistency
detection. Since in all experiments,Muffin achieves satisfying layer
coverage (i.e., only one layer cannot be used with all datasets), we
consider that the values of𝑀𝐴𝑋𝑐 and𝑀𝐴𝑋𝑣 are set properly. For
the thresholds, 𝜖 is a quite small value (i.e., 1𝑒−5), thus we only
evaluate the number of inconsistencies detected by Muffin with
different 𝑡 values.

Figure 5 shows the number of inconsistencies detected byMuffin
under different 𝑡 values, ranging from 0.001 to 0.4. We can observe
that when 𝑡 is small,Muffin is more sensitive to small variance of
differences, thus it detects more inconsistencies. As the value of
𝑡 increases, the number of inconsistencies decreases slowly, and
keeps stable when 𝑡 ∈ [0.15, 0.4]. Thus, the default 𝑡 value in
Muffin is 0.15. Although bugs incurring small variances may be
neglected, such bugs can be revealed under other input values or
model architectures (i.e., variance larger than 𝑡 ).

6 DISCUSSION
6.1 Summary of Evaluation
As discussed before,Muffin-UT is designed based on the idea of unit
testing, which tests a specific library function at a time. The evalua-
tion results show thatMuffin can detect more layer inconsistencies
thanMuffin-UT. Themain reason is that many layer inconsistencies
can only be triggered by specific inputs. For instance, the gradients

inconsistency of “MaxPooling1D” layer only happens when mul-
tiple elements in the input tensor have the same maximum value.
In order to trigger such inconsistencies using Muffin-UT, we have
to fuzzing the inputs. Since layers in DL libraries typically have
huge input value ranges, e.g., high-dimensional tensor inputs where
each element ranges from (−∞,∞), it is quite challenging to find
specific inputs that can trigger corner cases [54]. On the other hand,
Muffin performs testing based on generated models. Due to the
existence of different layer types, we thus simulates the real calcu-
lation process and reduce the input ranges. As a result, the possible
corner cases (i.e., multiple maximum values) can be triggered by
Muffin. Considering that unit testing is necessary before version
release, while bugs can still be detected in the latest versions, we
believe DL library testing based on model generation is an effective
supplement to unit testing.

Among the bugs detected by Muffin, some of them are actually
caused by unclear specifications. For instance, the gradient calcu-
lation bug of “categorical_hinge” loss function is actually caused
by the different specification of calculating the gradients of “max()”
function. Specifically, when there are multiple maximum elements,
TensorFlow will divide the gradient with the number of maximum
element, while Theano and CNTK do not have this operation. Simi-
larly, for “MaxPooling1D” layer, when there are multiple maximum
elements, TensorFlow and CNTK would only apply the gradients to
one of the maximum elements, while Theano apply the gradients to
all maximum elements. Due to unclear specifications, different DL
libraries have different implementations. Although in most cases
the results of these implementations are consistent, robustness is-
sues may be caused by the corner cases (e.g., easier to generate
adversarial inputs [24]). Therefore, we call for the community to
pay more attention on the unclear specification problems in DL
libraries.

6.2 Threats to Validity
We now discuss possible threats in this work, and the methods we
take to address such threats. First of all, we only evaluate the effec-
tiveness of Muffin on three DL libraries, i.e., TensorFlow, Theano
and CNTK. These libraries can be called using the same front-end
library (i.e., Keras), which facilitate the implementation and per-
forming differential testing. Other libraries that do not support
Keras (i.e., PyTorch) currently are not supported byMuffin. How-
ever, the ideas of model generation and inconsistency detection
adopted in Muffin are general. For instance, in order to test Py-
Torch, it requires to replace the Keras APIs used in Muffin with
the corresponding PyTorch APIs. To reduce this treat, we evaluate
Muffin with a total of 15 different release versions of DL libraries.
In addition, we also use diverse models (including the models gen-
erated byMuffin, existing models on 6 real datasets, as well as their
mutants generated by existing work) to evaluate the inconsistency
detection performance of our approach.

Another threat mainly lies in randomness and threshold settings
in our experiment. To reduce the randomness, we conduct five
experiments with different library versions (i.e., E1-E5, refer to
Table 1, Table2 in Supplementary Material). In each experiment,
every method generates/mutates the same number of models for 6
commonly-used datasets, and we record and compare the results
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and execution time. For threshold settings (e.g., 𝑡 ,𝑀𝐴𝑋𝑐 and𝑀𝐴𝑋𝑣 ),
since in every experiment Muffin achieves 58/59 function usage,
we do not increase𝑀𝐴𝑋𝑐 and𝑀𝐴𝑋𝑣 . For threshold 𝑡 , as discussed
in Section 4.4, we choose a quite large threshold. Slightly changing
𝑡 (e.g., from 0.15 to 0.4) has little impact on the results.

6.3 Future Directions
Muffin can be potentially improved in the following two aspects.
First, Muffin only covers library codes in the layer function granu-
larity through trying to generate model covering all the provided
APIs. However, there may still be a large portion of library codes
that cannot be covered (e.g., private methods, branches). In the
future, Muffin can be extended to consider other coverage metrics
(e.g., line coverage, branch coverage), and conducts model genera-
tion/mutation to explore more library codes.

Second, Muffin still relies on differential testing to solve the test
oracle problem. However, if different DL libraries produce the same
wrong results, Muffin cannot identify such bugs. Moreover, in the
evaluation, we also notice that under certain circumstances, the
model generated byMuffin may cause one library to crash, while
the other two produce inconsistent results. In such cases, it requires
huge human efforts to identify potential bugs. To get rid of this
limitation, we intend to design metamorphic relations based on the
properties of DL models, and conducts metamorphic testing to test
one library accordingly.

7 RELATEDWORK
As discussed before, CRADLE [44] and LEMON [50] are the most
related work to ours that targets DL library testing, both of which
require existing DL models and only detect bugs in model infer-
ence phase. Different from them, Muffin detects DL library bugs in
model training phase via DAG-based model generation. In the liter-
ature, there is a body of work focusing on testing machine learning
(ML) libraries as well [17–19, 56, 59]. For instance, Dutta et al. [17]
propose ProbFuzz to test probabilistic programming systems via
generating programs based on pre-defined templates. Dwarakanath
et al. [19] adopt metamorphic testing to test image classification
applications through mutating the training and testing data. How-
ever, these approaches cannot be directly adopted for DL libraries
testing.

On the other hand, there is a great deal of researches focusing
on the testing of DL models [35–38, 42, 43, 48, 54, 55]. In particu-
lar, many research efforts have been put on designing criteria to
measure test adequacy [16, 35, 37]. For instance, Pei et al. [43] first
propose neuron coverage as the criteria for testing DL models. Ma
et al. [37] further define both neuron and layer level coverage crite-
ria to help gauging the testing quality of DL models. Kim et al. [35]
propose surprise coverage based on surprise adequacy, which mea-
sures relative surprise of each input with respect to the training
data. Du et al. [16] propose a set of similarity metrics and coverage
criteria to analyze stateful DL systems such as Recurrent Neural
Networks (RNNs) [39]. Moreover, there are a lot of studies intend
to reveal defects in DL models via generating adversarial inputs
or finding corner cases [48, 55, 60]. For instance, Tian et al. [48]
implement DeepTest for detecting erroneous behaviors of DL-based
self-driving cars via automatically generating test cases based on

image transformations. Similarly, Zhang et al. [60] implement Deep-
Road, which applies Generative Adversarial Networks (GANs) [24]
to test DL-based self-driving cars. Besides, there are also many re-
searches focus on detecting different kinds of bugs in model struc-
tures or training parameter settings [51, 62]. For instance, Zhang
et al. [62] propose DEBAR, a static analysis approach for detecting
numerical bugs in DL models. Wardat et al. [51] propose a dynamic
analysis based approach to detect numerical errors when training
DL models. Similarly, Zhang et al. [61] propose AUTOTRAINER, a
tool that detects and auto-repairs commonly-seen model training
problems such as vanishing gradient, exploding gradients and slow
convergence. Different from them, our work focuses on testing DL
libraries rather than DL models or parameters.

Ourwork is also related to differential testing, an effectivemethod
that use similar programs as cross referencing oracles to detect
bugs [26]. Differential testing has been successful in uncovering
bugs across various types of programs, such as compilers [58],
Java Virtual Machine (JVM) implementations [13, 14], web appli-
cations [10], and security-related APIs [46]. In recent years, re-
searchers also utilize differential testing in the area of DL test-
ing [43, 48]. For instance, Pei et al. [43] propose DeepXplore, a
differential testing framework to identify DL model defects via im-
age transformation. Guo et al. [27] propose DLFuzz, a differential
fuzzing testing framework that exposes DL model errors through
mutating inputs to maximize model output difference. These ap-
proaches focus on testing DL models, while Muffin is designed for
DL library testing with high coverage.

8 CONCLUSION
In this paper, we propose a novel approach to test DL library codes
via direct model generation using library APIs. In order to generate
diverse DL models, we use DAG to formulate the model structure
and propose a DAG-based model generation algorithm. In order to
detect bugs, we divide the model training phase into three stages,
and design different measurements for each stage. In this way, our
approach can detect library bugs related to model training, which
is not covered by previous studies. We implement our approach
as an open-source tool called Muffin. To evaluate the performance
of Muffin, we conduct a series of experiments based on 15 release
versions of three widely-used DL libraries.Muffin detects 39 new
bugs in the latest versions of these libraries. Besides, Muffin out-
performs other methods in terms of the number of detected unique
inconsistencies.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China under Grant 2020YFA0711400 and the Natural Science Foun-
dation of Shanghai (No. 22ZR1407900).

REFERENCES
[1] Accessed: 2021. Cloud TPU. https://cloud.google.com/tpu.
[2] Accessed: 2021. CNTK. https://docs.microsoft.com/cognitive-toolkit.
[3] Accessed: 2021. CNTK ops Pachakge: sqrt. https://docs.microsoft.com/en-us/

python/api/cntk/cntk.ops?view=cntk-py-2.7#sqrt-x--name----.
[4] Accessed: 2021. Keras. https://keras.io.
[5] Accessed: 2021. TensorFlow. https://www.tensorflow.org.
[6] Accessed: 2021. Tesla driver dies in first fatal crash while using autopilot

mode. https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-

https://cloud.google.com/tpu
https://docs.microsoft.com/cognitive-toolkit
https://docs.microsoft.com/en-us/python/api/cntk/cntk.ops?view=cntk-py-2.7##sqrt-x--name----
https://docs.microsoft.com/en-us/python/api/cntk/cntk.ops?view=cntk-py-2.7##sqrt-x--name----
https://keras.io
https://www.tensorflow.org
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang

death-self-driving-car-elon-musk.
[7] Accessed: 2021. Uber’s self-driving operator charged over fatal crash. https:

//www.bbc.com/news/technology-54175359.
[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In Proc. of the 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI. USENIX Association, 265–283.

[9] Cyrus D Cantrell. 2000. Modern mathematical methods for physicists and engineers.
Cambridge University Press.

[10] Peter Chapman and David Evans. 2011. Automated black-box detection of side-
channel vulnerabilities in web applications. In Proc. of the 18th ACM Conference
on Computer and Communications Security, CCS. ACM, 263–274. https://doi.org/
10.1145/2046707.2046737

[11] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous Incident
Triage for Large-Scale Online Service Systems. In Proc. of the 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE. IEEE, 364–375.
https://doi.org/10.1109/ASE.2019.00042

[12] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020.
How Incidental are the Incidents? Characterizing and Prioritizing Incidents for
Large-Scale Online Service Systems. In Proc. of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE. IEEE, 373–384. https:
//doi.org/10.1145/3324884.3416624

[13] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of
JVM implementations. In Proc. of the 41st International Conference on Software
Engineering, ICSE. IEEE / ACM, 1257–1268. https://doi.org/10.1109/ICSE.2019.
00127

[14] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In Proc. of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 85–99. https://doi.org/10.1145/2908080.2908095

[15] Keunwoo Choi, György Fazekas, Mark B. Sandler, and Kyunghyun Cho. 2017.
Convolutional recurrent neural networks for music classification. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE,
2392–2396. https://doi.org/10.1109/ICASSP.2017.7952585

[16] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
Stellar: model-based quantitative analysis of stateful deep learning systems. In
Proc. of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE. ACM, 477–487.
https://doi.org/10.1145/3338906.3338954

[17] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing
probabilistic programming systems. In Proc. of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE. ACM, 574–586. https://doi.org/10.1145/3236024.
3236057

[18] Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic. 2019. Storm:
program reduction for testing and debugging probabilistic programming systems.
In Proc. of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE. ACM,
729–739. https://doi.org/10.1145/3338906.3338972

[19] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao, R. P.
Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. 2018. Identifying
implementation bugs in machine learning based image classifiers using meta-
morphic testing. In Proc. of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA. ACM, 118–128. https://doi.org/10.1145/
3213846.3213858

[20] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. J. Mach. Learn. Res. 20 (2019), 55:1–55:21.

[21] David B. Fogel. 1997. Evolutionary algorithms in theory and practice. Complex.
2, 4 (1997), 26–27. https://doi.org/10.1002/(SICI)1099-0526(199703/04)2:4<26::
AID-CPLX6>3.0.CO;2-7

[22] David Goldberg. 1991. What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Comput. Surv. 23, 1 (1991), 5–48. https://doi.
org/10.1145/103162.103163

[23] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org/

[24] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems. 2672–2680.

[25] Jiazhen Gu, Jiaqi Wen, ZijianWang, Pu Zhao, Chuan Luo, Yu Kang, Yangfan Zhou,
Li Yang, Jeffrey Sun, Zhangwei Xu, Bo Qiao, Liqun Li, Qingwei Lin, and Dongmei
Zhang. 2020. Efficient customer incident triage via linking with system incidents.

In Proc. of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE. ACM, 1296–
1307. https://doi.org/10.1145/3368089.3417061

[26] Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception and
practices of differential testing. In Proc. of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP). IEEE / ACM,
71–80. https://doi.org/10.1109/ICSE-SEIP.2019.00016

[27] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
differential fuzzing testing of deep learning systems. In Proc. of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE. ACM, 739–743. https://doi.
org/10.1145/3236024.3264835

[28] Abhishek Gupta, Alagan Anpalagan, Ling Guan, and Ahmed Shaharyar Khwaja.
2021. Deep learning for object detection and scene perception in self-driving
cars: Survey, challenges, and open issues. Array 10 (2021), 100057. https:
//doi.org/10.1016/j.array.2021.100057

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. IEEE Computer Society, 770–778. https://doi.org/10.
1109/CVPR.2016.90

[30] Robert Hecht-Nielsen. 1988. Theory of the backpropagation neural network.
Neural Networks 1, Supplement-1 (1988), 445–448. https://doi.org/10.1016/0893-
6080(88)90469-8

[31] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR. IEEE Computer Society, 2261–
2269. https://doi.org/10.1109/CVPR.2017.243

[32] Jane Hung, Allen Goodman, Deepali Ravel, Stefanie Lopes, Gabriel Rangel, Odail-
ton A. Nery, Benoit Malleret, Francois Nosten, Marcus V. G. Lacerda, Marcelo U.
Ferreira, Laurent Rénia, Manoj Duraisingh, Fabio T. M. Costa, Matthias Marti,
and Anne E. Carpenter. 2020. Keras R-CNN: library for cell detection in bio-
logical images using deep neural networks. BMC Bioinform. 21, 1 (2020), 300.
https://doi.org/10.1186/s12859-020-03635-x

[33] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proc. of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE. ACM, 510–520. https://doi.
org/10.1145/3338906.3338955

[34] Veton Kepuska and Gamal Bohouta. 2018. Next-generation of virtual personal
assistants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home).
In IEEE 8th Annual Computing and Communication Workshop and Conference,
CCWC. IEEE, 99–103. https://doi.org/10.1109/CCWC.2018.8301638

[35] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In Proc. of the 41st International Conference on
Software Engineering,ICSE. IEEE / ACM, 1039–1049. https://doi.org/10.1109/ICSE.
2019.00108

[36] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
multi-granularity testing criteria for deep learning systems. In Proc. of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE.
ACM, 120–131. https://doi.org/10.1145/3238147.3238202

[37] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao
Xie, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepMutation:
Mutation Testing of Deep Learning Systems. In Proc. of the 29th IEEE International
Symposium on Software Reliability Engineering, ISSRE. IEEE Computer Society,
100–111. https://doi.org/10.1109/ISSRE.2018.00021

[38] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proc. of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE. ACM, 175–186. https://doi.org/10.1145/3236024.3236082

[39] Tomás Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Proc. of the
11th Annual Conference of the International Speech Communication Association,
INTERSPEECH. ISCA, 1045–1048.

[40] Amita Muralikrishna, Luís Eduardo Antunes Vieira, Rafael Duarte Coelho dos
Santos, and Adriano P. Almeida. 2020. Total Solar Irradiance Forecasting with
Keras Recurrent Neural Networks. In 20th International Conference on Compu-
tational Science and Its Applications - ICCSA (Lecture Notes in Computer Science,
Vol. 12253). Springer, 255–269. https://doi.org/10.1007/978-3-030-58814-4_18

[41] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proc. of the 27th International Conference on
Machine Learning, ICML. Omnipress, 807–814.

[42] Augustus Odena, Catherine Olsson, David G. Andersen, and Ian J. Goodfellow.
2019. TensorFuzz: DebuggingNeural Networkswith Coverage-Guided Fuzzing. In
Proc. of the 36th International Conference on Machine Learning, ICML (Proceedings
of Machine Learning Research, Vol. 97). PMLR, 4901–4911.

https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.bbc.com/news/technology-54175359
https://www.bbc.com/news/technology-54175359
https://doi.org/10.1145/2046707.2046737
https://doi.org/10.1145/2046707.2046737
https://doi.org/10.1109/ASE.2019.00042
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1109/ICASSP.2017.7952585
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.1145/3236024.3236057
https://doi.org/10.1145/3236024.3236057
https://doi.org/10.1145/3338906.3338972
https://doi.org/10.1145/3213846.3213858
https://doi.org/10.1145/3213846.3213858
https://doi.org/10.1002/(SICI)1099-0526(199703/04)2:4<26::AID-CPLX6>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1099-0526(199703/04)2:4<26::AID-CPLX6>3.0.CO;2-7
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://www.deeplearningbook.org/
https://doi.org/10.1145/3368089.3417061
https://doi.org/10.1109/ICSE-SEIP.2019.00016
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(88)90469-8
https://doi.org/10.1016/0893-6080(88)90469-8
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1186/s12859-020-03635-x
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1109/CCWC.2018.8301638
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1109/ISSRE.2018.00021
https://doi.org/10.1145/3236024.3236082
https://doi.org/10.1007/978-3-030-58814-4_18


Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[43] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proc. of the 26th Sympo-
sium on Operating Systems Principles, SOSP. ACM, 1–18. https://doi.org/10.1145/
3132747.3132785

[44] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
cross-backend validation to detect and localize bugs in deep learning libraries.
In Proc. of the 41st International Conference on Software Engineering,ICSE. IEEE /
ACM, 1027–1038. https://doi.org/10.1109/ICSE.2019.00107

[45] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proc. of the 3rd International Confer-
ence on Learning Representations, ICLR, Yoshua Bengio and Yann LeCun (Eds.).

[46] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly Shmatikov.
2011. A security policy oracle: detecting security holes using multiple API
implementations. In Proc. of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI. ACM, 343–354. https://doi.org/10.
1145/1993316.1993539

[47] The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Alma-
hairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien,
Justin Bayer, Anatoly Belikov, et al. 2016. Theano: A Python framework for
fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688
(2016).

[48] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: automated
testing of deep-neural-network-driven autonomous cars. In Proc. of the 40th
International Conference on Software Engineering,ICSE. ACM, 303–314. https:
//doi.org/10.1145/3180155.3180220

[49] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and
Lidia S. Chao. 2019. Learning Deep Transformer Models for Machine Translation.
In Proc. of the 57th Conference of the Association for Computational Linguistics, ACL,
Volume 1: Long Papers. Association for Computational Linguistics, 1810–1822.
https://doi.org/10.18653/v1/P19-1176

[50] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In Proc. of the 28th ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE. ACM, 788–799. https://doi.org/10.1145/
3368089.3409761

[51] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault
Localization for Deep Neural Networks. In Proc.of the 43rd IEEE/ACM International
Conference on Software Engineering, ICSE. IEEE, 251–262. https://doi.org/10.1109/
ICSE43902.2021.00034

[52] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. 2019. A Survey on
Neural Architecture Search. CoRR abs/1905.01392 (2019). arXiv:1905.01392
http://arxiv.org/abs/1905.01392

[53] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp
Krähenbühl, and Ross B. Girshick. 2019. Long-Term Feature Banks for De-
tailed Video Understanding. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR. Computer Vision Foundation / IEEE, 284–293. https:
//doi.org/10.1109/CVPR.2019.00037

[54] WeibinWu, Hui Xu, Sanqiang Zhong, Michael R. Lyu, and Irwin King. 2019. Deep
Validation: TowardDetecting Real-World Corner Cases for DeepNeural Networks.
In Proc. of the 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN. IEEE, 125–137. https://doi.org/10.1109/DSN.2019.
00026

[55] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proc. of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA. ACM,
146–157. https://doi.org/10.1145/3293882.3330579

[56] Xiaoyuan Xie, Zhiyi Zhang, Tsong Yueh Chen, Yang Liu, Pak-Lok Poon, and
Baowen Xu. 2020. METTLE: A METamorphic Testing Approach to Assessing
and Validating Unsupervised Machine Learning Systems. IEEE Trans. Reliab. 69,
4 (2020), 1293–1322. https://doi.org/10.1109/TR.2020.2972266

[57] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical Evaluation of
Rectified Activations in Convolutional Network. CoRR abs/1505.00853 (2015).
arXiv:1505.00853

[58] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In Proc. of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI. ACM, 283–294.
https://doi.org/10.1145/1993316.1993532

[59] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering
(2020).

[60] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proc. of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE. ACM, 132–142.
https://doi.org/10.1145/3238147.3238187

[61] Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. 2021. AUTOTRAINER:
An Automatic DNN Training Problem Detection and Repair System. In Proc. of
the 43rd IEEE/ACM International Conference on Software Engineering,ICSE. IEEE,
359–371. https://doi.org/10.1109/ICSE43902.2021.00043

[62] Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung, and
Tao Xie. 2020. Detecting numerical bugs in neural network architectures. In Proc.
of the 28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE. ACM, 826–837. https:
//doi.org/10.1145/3368089.3409720

https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1109/ICSE.2019.00107
https://doi.org/10.1145/1993316.1993539
https://doi.org/10.1145/1993316.1993539
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1109/ICSE43902.2021.00034
https://doi.org/10.1109/ICSE43902.2021.00034
https://arxiv.org/abs/1905.01392
http://arxiv.org/abs/1905.01392
https://doi.org/10.1109/CVPR.2019.00037
https://doi.org/10.1109/CVPR.2019.00037
https://doi.org/10.1109/DSN.2019.00026
https://doi.org/10.1109/DSN.2019.00026
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1109/TR.2020.2972266
https://arxiv.org/abs/1505.00853
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1109/ICSE43902.2021.00043
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning Model
	2.2 Deep Learning Library
	2.3 Challenges

	3 Approach
	3.1 Overview
	3.2 Model Generation
	3.3 Inconsistency Detection

	4 Evaluation Setup
	4.1 Libraries and Datasets
	4.2 Competitors
	4.3 Measurements
	4.4 Implementations

	5 Results and Analysis
	5.1 Effectiveness of Bug Detection
	5.2 Performance Comparison
	5.3 Effect of Different Parameter Settings

	6 Discussion
	6.1 Summary of Evaluation
	6.2 Threats to Validity
	6.3 Future Directions

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

